Market to farm: A new food waste disposal method raises fears that microplastics will taint fields

click to enlarge

A metal spoon removed from a Green Mountain Compost pile - LUKE AWTRY

  • Luke Awtry

  • A metal spoon removed from a Green Mountain Compost pile

Hundreds of pints of spoiled Ben & Jerry’s ice cream awaited their fate in a Williston warehouse this month.

Unfit for sale, the sweet rejects from the company’s factories would be scooped up by a worker driving a payloader and tipped with a crash into a filthy metal hopper. Augers would funnel the mess to a monstrous red machine with powerful spinning paddles that would pummel the pints, breaking down the cardboard and plastic packaging and separating most of it from the sugary slop.

Welcome to Vermont’s first waste depackaging facility, where Americone Dreams go to die.

Casella Waste Systems fired up the $3 million waste-processing plant in January and, with it, a controversy about the new type of food waste it generates.

The facility is designed to tackle the problem of what to do with food waste that is banned from Vermont’s only landfill, in Coventry, but still encased in boxes, plastic bottles and plastic bags.

The new machinery can process thousands of tons a year of food that is thrown away by manufacturers and grocery stores while still in its plastic, metal or paper packaging. Manufacturers such as Ben & Jerry’s often need to discard batches of food and beverages that don’t meet their strict quality-control standards or are past their shelf life. The Williston facility also handles food waste from homes, restaurants, apartment complexes and institutions.

While the process separates out most contaminants, it does not capture them all. That melted Ben & Jerry’s ice cream and other food slop will still contain tiny bits of plastic when it leaves Casella’s separator and is shipped to biogas plants. There, when mixed with other food or farm waste, it will decompose in huge digesters, generating methane that is turned into energy. Some of the plastic — the crucial question is how much — will still be present when the depleted material is spread on Vermont farm fields.

click to enlarge

Ben & Jerry's ice cream pints awaiting depackaging - LUKE AWTRY

  • Luke Awtry

  • Ben & Jerry’s ice cream pints awaiting depackaging

The state’s nearly decade-long drive to steer all organic material — whether leaves raked off lawns, vegetables scraped off dinner plates or stale bread tossed from supermarket shelves — out of the landfill and into animal feed, healthy soil and green energy has made Vermont a leader in food waste recovery. But the solution to one problem — wasting valuable landfill space with food that simply rots — has unintentionally caused another, say critics of the new process.

So far this year, more than 500 tons of material from digesters that accept this depackaged waste have likely been applied to farmland in Vermont, according to data from the state Department of Environmental Conservation.

“It’s foolish to think that we can lace our precious agricultural lands with countless bits of indestructible microplastic and not suffer the health and environmental consequences,” said Paul Burns, executive director of the Vermont Public Interest Research Group.

The impact of plastic in soils is not well understood, but studies show that it can affect soil health, reduce plant vigor, and, if the particles are small enough, be absorbed by plants and end up in food for animals and people.

So far, all that tonnage has gone to just three farms. But state regulators are concerned enough that they’ve instituted what amounts to a moratorium on more farms spreading the waste on fields until they learn more about what’s in it.

Supporters say the Casella depackaging plant is a vital tool in the campaign to recycle more food waste and conserve landfill space. A 2018 study of Vermont’s waste stream estimated that 24 percent of all landfilled waste, or 80,000 tons a year, was organic material that could be put to better use. Of that, 38 percent was discarded still in its packaging.

Surrounding states are adding depackaging capacity, supporters note. Without similar equipment, Vermont’s food and beverage businesses may be forced to haul its packaged waste out of state. Hannaford, for example, trucks expired food from its 15 Vermont supermarkets to a depackaging and biogas power plant outside Bangor, Maine, a six-hour drive from Burlington.

Depackaging food waste can also help extend the life of the Coventry landfill, boost green-energy production and provide farmers with an alternative to synthetic fertilizers.

In April, Cathy Jamieson, manager of the state’s solid waste program, told lawmakers the plain truth: “We need to deal with food waste in packaging if we want to divert these materials.”


Guessing Game

click to enlarge

From left: Mike Casella, Steven Collier and Anson Tebbetts examining food slurry - LUKE AWTRY

  • Luke Awtry

  • From left: Mike Casella, Steven Collier and Anson Tebbetts examining food slurry

When Casella started to search for a depackaging machine several years ago, the company sought the best technology on the market, according to the Williston facility’s general manager, Mike Casella.

The firm certainly has the resources to get the best. Started by two brothers in Rutland, Casella is now a publicly traded company that operates massive waste operations from Maine to Pennsylvania. It dominates waste hauling in Vermont and owns the landfill in Coventry.

Casella ultimately chose the Thor Turbo Separator, which manufacturer Scott Equipment touts as capable of processing 40 tons of organic material per hour and rendering it “99 percent clean.”

“There will always be pieces of plastic, glass, or metal that scoots through our screens,” the company says on its website. “All we can share is that our system is good at keeping it to a bare minimum.”

But 10 months into the new operation, Mike Casella acknowledged that the amount of nonorganic material departing the depackaging operation is little more than guesswork. “It’s definitely less than 5 percent,” he said. He later amended that to 1 percent and then “less than half a percent, or even less.”

“To be honest, we don’t know,” he said finally.

The more the company can learn about what contaminants get through the process, he said, the more work it can do with customers to keep them out of the food waste.

One reason for the uncertainty is the great variability in the material being run through the Thor, so named to highlight the power of its spinning hammers.

Discarded cans of beer from local brewers such as Frost Beer Works, Zero Gravity Craft Brewery and Fiddlehead Brewing pose virtually no risk of contamination. Workers presort the material to remove and recycle any plastic carriers and cardboard packaging, leaving just the aluminum cans to be smashed open. The cans themselves are compacted into bales and recycled.

Other items aren’t quite so simple. In the case of single-serve coffee K-Cups, the Thor’s smashing action must separate the coffee grounds from the cardboard boxes they come in, the white plastic container cups, small plastic internal filters and foil tops.

Most problematic are the tons of food scraps from green bins picked up from restaurants, schools, hospitals, hotels, apartment buildings and homes. On a recent visit to the Williston facility, Mike Casella waded into a concrete bunker full of stinking waste on its way to the Thor to find it polluted with non-compostable drink cups, straws, plastic bags and ketchup packets. He tugged on a bit of fabric and pulled out a slimy shirt.

click to enlarge

A bunker full of food scraps — and trash - LUKE AWTRY

  • Luke Awtry

  • A bunker full of food scraps — and trash

The volume of these postconsumer food scraps — and the non-compostable waste in the mix — has increased dramatically since last year. That’s because on July 1, 2020, the state law that bans food waste from being discarded as trash took full effect.

The largest compost operation in the state, the Chittenden Solid Waste District‘s Green Mountain Compost, is having such difficulty keeping its compost clean that it is instituting new rules on January 1. Compostable foodware such as plates and utensils will no longer be accepted, because sorting out what is actually compostable and what is plastic has become too labor-intensive, CSWD officials say.

Casella previously hauled most of its organic material to Green Mountain Compost, but those shipments have dropped off sharply since the depackaging facility came online. The 373 tons or so of food scraps per month that Casella was taking to CSWD started falling in January, decreased steadily to 47 tons by June and eventually flatlined to zero, according to CSWD data.

Now Casella is running those food scraps through the Thor’s screens to sift out contaminants, mixing them into a slurry and sending it off to boost energy production. Tanker trucks haul the nutrient-rich goop to digesters, where microorganisms break it down in oxygen-free environments, releasing methane that’s burned for heat or to generate electricity. Vermont farms have been using digesters to make power from cow manure for several decades, and the practice is growing.

It’s the depleted food waste that emerges from digesters that is the cause of current concern.

PurposeEnergy of Windham, N.H., helped build the nation’s first brewery waste-to-electricity plant at the former Magic Hat Brewing in South Burlington in 2010. The company now uses it to blend the depackaged food from Casella with watery waste from multiple brewers, distillers and food manufacturers. PurposeEnergy has three more digesters in development in Vermont.

Earlier this year, Vanguard Renewables of Wellesley, Mass., opened the largest digester in New England at the Goodrich Family Farm in Salisbury. Much of the gas produced is sold to Middlebury College to reduce its fossil-fuel use.

About 80 percent of the food slurry generated at Casella’s depackaging plant is delivered to digesters in South Burlington and Salisbury, Casella said. It’s also been trucked to a third digester at Gebbie’s Maplehurst Farm in Greensboro.


Tiny Shards

click to enlarge

Kate Porterfield hunting for microplastics in food waste at UVM - LUKE AWTRY

  • Luke Awtry

  • Kate Porterfield hunting for microplastics in food waste at UVM

The University of Vermont is studying Casella’s process to determine exactly what contaminants aren’t filtered from the organic waste and their potential impact on the environment. Casella and UVM’s Gund Institute for Environment contributed a combined $260,000 toward the research.

Under the direction of Eric Roy, interim director of the college’s environmental sciences program, two graduate students are tackling the issue from different angles. Sarah Hobson, who is pursuing a master’s degree in environmental science, is reviewing the published literature on depackaged food waste, composting and plastics contamination to understand the impact of plastic in food waste.

Kate Porterfield is a doctoral candidate in the engineering and math department who is studying biogas production rates. She’s also looking at microplastics contamination. “Microplastics” generally refers to tiny fragments of plastic, five millimeters or smaller.

To discover how much biogas different types of food waste produce, Porterfield takes samples from the depackaging equipment, runs them through a mini-digester in the UVM lab and analyzes the gas produced. She then uses a biological process to break down the waste further to help her more easily find, count and categorize the tiny bits of plastic left behind.

On the counter in her lab at UVM, Porterfield showed off dozens of tiny glass vials, each containing bits of what she presumes to be plastic, labeled by their size and the dates they were collected. Additional tests are needed to confirm that the shards are, in fact, plastic, but to the untrained eye the samples look unnatural. One bore a distinct pattern of tiny green dots in neat rows on a yellow background, leaving no doubt that the material was man-made — likely a plastic film used in food packaging.

Preliminary results indicate that the amount of microplastics in the Casella waste is comparable to what’s been found during studies of compost and food waste conducted elsewhere, Roy said. Researchers typically count the number of microplastic particles per kilogram. Existing studies vary widely, and most have found between 20 and 2,800 particles per kilogram, Roy said. Additional testing on a wider variety of samples from Casella is still needed.

“We have more work to do to put this information into a better context,” Roy said. He expects to publish the team’s work in early 2022.

Quantifying the amount of plastic headed to farm fields is one thing; understanding what risks, if any, it poses to human health and the environment is very different, Roy said.

Some studies indicate that microplastics may damage soil and plant health, Roy said during a recent webinar describing the research. They may inhibit plant and root growth and cause lower germination rates in seeds. Some suggest that microplastics could lower soil’s capacity to hold water.

But other studies indicate that microplastics may improve soil aeration and drainage, he said.

click to enlarge

UVM researchers Kate Porterfield (left) and  Sarah Hobson - LUKE AWTRY

  • Luke Awtry

  • UVM researchers Kate Porterfield (left) and Sarah Hobson

Plastic makes its way into agricultural soils from various sources: as mulch used to deter weed growth, irrigation systems, farm equipment and even litter, Roy said.

That may make it challenging for researchers to pinpoint the sources of microplastics already in the landscape, let alone comprehend the impact of new ones.

“We do need some more basic understanding of what’s out there already and how microplastics may be problematic,” Roy said.

Deb Neher, a professor in the UVM Department of Plant and Soil Science, told Seven Days that a growing a body of data suggests that microplastics in soil are an increasing problem. She expects that UVM’s research will provide important data and insight into how big a problem the issue is in Vermont.

Because plastics don’t break down easily, they accumulate in the soil and the organisms that live there.

Just like aquatic creatures are harmed when they mistake microplastics for food, creatures such as earthworms ingest them and effectively starve because they’re eating material with no nutritional value, she said, noting: “The empirical evidence is mounting of detrimental impacts of microplastics to soil food webs.”


Urging Caution

click to enlarge

The Thor Turbo Separator at Casella - LUKE AWTRY

  • Luke Awtry

  • The Thor Turbo Separator at Casella

The depackaging process “has the capacity, if not well implemented, to cause immense harm,” Sen. Chris Bray (D-Addison), chair of the Natural Resources and Energy Committee, told Seven Days. Lawmakers are considering whether additional regulation is necessary.

The state failed to protect residents for years from the health threats posed by per- and polyfluoroalkyl substances, or PFAS, Bray said, and Vermonters deserve better. The so-called “forever chemicals” contaminated the groundwater at the Vermont Air National Guard base, as well as hundreds of private wells near a former Teflon coating plant in the Bennington area.

“Let’s not shoot ourselves in the foot again,” Bray said. “Let’s not poison ourselves and then be stuck dealing with the damage.”

That message appears to be getting through to regulators. Agency of Agriculture, Food and Markets officials have informed Casella that it can continue current operations, but the agency will not approve spreading food waste on additional farms until the issue has been further studied.

Cary Giguere, director of public health and resource management for the agriculture agency, said the pause was needed to give the state time to better understand what is effectively a new, unregulated waste stream.

“This is one of the unintended consequences of the Universal Recycling Law that warrants further examination,” Giguere said, referring to the 2012 legislation that phased out dumping food waste in landfills over several years.

If tiny bits of plastic are seeding farmers’ fields and running off into surrounding waterways, the public is likely to blame farmers, Giguere said. As a result, the agency has informed farmers who have been accepting Casella’s material that more study is needed.

“This falls along the lines of: What we don’t know is of more concern at this point than what we do know,” Giguere said.

Officials from the Department of Environmental Conservation and Agency of Agriculture are developing a sampling program to help determine the extent of the problem.

If the state opts to undertake an extensive soil testing program, it may look for more than microplastics, DEC Commissioner Peter Walke said. Heavy metals and PFAS, which have been linked to the land application of biosolids from wastewater treatment plants, may also merit a closer look.

“If we’re going to do the work, it probably behooves us to take as broad a look as we can,” Walke said.

Before touring the depackaging plant, Walke said, he had assumed that the machinery was “shredding” the pints. But he learned that the hammering process causes the same result as, say, what happens when an ice cream tub is dropped and spills its contents.

“If I scooped that up, I would not have any problem putting that down the drain or in my compost,” he said.

Agriculture Secretary Anson Tebbetts also toured the depackaging plant earlier this month and came away sounding impressed.

“It’s amazing technology, what is occurring here,” he said. “We have this tremendous amount of waste, and we can somehow convert it into something that could be useful, as opposed to throwing it into a landfill.”

He pointed to a ketchup packet caught in the Thor’s screens as evidence that waste is captured, but he acknowledged that proved little when it comes to microplastics.

“I think people are trying to figure out how much of it is making its way into the slurry,” Tebbetts said. “That’s what we’re trying to figure out. Is it 1 percent? Two percent? Ten percent?” He echoed Mike Casella: “I don’t know.”


Farmers Fret

click to enlarge

A screening machine at Green Mountain Compost - LUKE AWTRY

  • Luke Awtry

  • A screening machine at Green Mountain Compost

The agriculture agency’s decision to put farmers on notice has some of them worried.

Laura DiPietro, the agency’s deputy director of agricultural resource management, said she called the three farmers involved to provide them with information. Farmers have taken clean bulk food waste from manufacturers for years, but ag officials wanted to make certain they understood that the depackaged material is different, DiPietro said.

Peter Gebbie in Greensboro started receiving shipments of waste from the depackaging operation over the summer. It went into a digester and was mixed with manure from his 250 beef cattle; the food waste, particularly when nutrient rich, increased the production of gas. That, in turn, generated electricity that he sold to utilities. The spent material flowed to his manure pit and was spread on his fields.

The news that he might have inadvertently distributed plastics on his land was troubling, he said. “I wouldn’t want that any more than most people would,” Gebbie said.

If Casella can show that it can keep plastic out of the waste, Gebbie said, he’d probably take the material again, although he might not get the chance. A fire destroyed his digester in September, and he doesn’t know whether he’ll be able to rebuild.

St. Albans dairy farmer Jeff Boissoneault also accepted some of Casella’s organic waste: 86 tons of leftovers from the digester that PurposeEnergy built for Magic Hat. He is waiting for additional information before deciding whether to take more material, said his son Cody.

Eric Fitch, founder and CEO of PurposeEnergy, said the information that the agriculture agency gave Boissoneault was “inaccurate and completely unrelated to our process or the materials we receive.”

“It is a very unfortunate situation,” he wrote in an email. He did not elaborate.

But in an email to DiPietro, he wrote that the amount of potential contamination was minuscule, given how light the packaging was compared to the food waste and the screens designed to remove it. He estimated that, even if packaging evaded all screens, it might represent 0.001 percent contamination.

“Researchers at UVM are studying these materials, and it may be prudent to wait for their results so that accurate information can be shared with the farming community,” he wrote.


All In on Biogas

click to enlarge

Dan Goossen of Green Mountain Compost - LUKE AWTRY

  • Luke Awtry

  • Dan Goossen of Green Mountain Compost

Vanguard Renewables, the developer of the huge digester in Salisbury that is fueling Middlebury College, has made a big bet on biogas not only in Vermont but also around the nation. It has six facilities in operation, five in Massachusetts and one in Vermont, and 10 others in development, Ray Duer, vice president of sales, said in a recent webinar. Biogas is crucial to addressing climate change, he said, and Vanguard’s “aggressive” growth strategy envisions installing 60 digesters across the country in four years.

While few farms have spread material from Casella’s depackaging facility so far, industrial depackaging is in its infancy. More and more food manufacturers are committing to zero-waste goals, Mike Casella said. The Williston facility could handle much more material than it currently does, he added.

In April, Vanguard’s founder, John Hanselman, told lawmakers that Vermont should eventually have multiple depackaging operations. CSWD leaders considered partnering with Vanguard on a depackaging operation of its own, but Casella beat the waste district to the punch.

Asked about microplastic contamination, Hanselman offered general reassurances to lawmakers that plastics were screened out before being spread on Goodrich Family Farm’s fields, which are located along Otter Creek.

“I was less than satisfied with that response,” Rep. Kari Dolan (D-Waitsfield) told Seven Days.

Dolan said the issue is similar to the environmental risk once posed by microbeads, tiny plastic particles used as abrasives in skin care products, soaps and toothpastes. When flushed down the drain, the beads are so small that they pass through wastewater treatment system filters and into waterways, where they can accumulate in aquatic organisms. Vermont began the process of barring microbeads in 2015, before the federal government passed a national ban.

Just as they do in oceans, plastics break down in soil into smaller and smaller pieces. That’s why having additional details about the type of waste screening being used is so important, Dolan said.

Hanselman declined to be interviewed by Seven Days but offered a written statement.

“We recognize that plastic contamination is endemic in all forms of food recycling and utilization, whether composting or animal feed,” he wrote. “We have gone to extra lengths at our anaerobic digester facilities by adding a secondary screening process to remove as much of the residual plastic as possible prior to any land application.”

UVM’s Roy said researchers have not yet been able to test the spent material going onto the Goodrich farmland.

The danger of microplastic contamination is one that composters and others envisioned when the Universal Recycling Law was written, said Tom Gilbert, co-owner of Black Dirt Farm, a compost operation in Stannard.

For that reason, the law contained unambiguous requirements that organic material be separated from contaminants such as plastic “at the point of generation,” which Gilbert has argued is the supermarket. When that requirement became inconvenient, state waste regulators did “an end run” around the law to permit the depackaging facility, he said.

Jamieson, the state’s solid waste manager, responded to this charge in April, telling lawmakers that the language in the law was more of a guide and that mandating businesses to separate food waste from packaging in all situations was impractical and unenforceable.

The legal debate aside, Gilbert said unregulated use of depackaging facilities certainly violates the spirit of the recycling law. The law identifies compost as a higher and better use for organic waste than energy production. While there may be a role for depackaging facilities, the scale of Casella’s diversion of food scraps from compost to biogas shows that “the state is backsliding” on its commitment to those priorities, he said.

It also sends mixed messages. As Gilbert put it, why should Vermonters be told that they have to separate their food waste from packaging, but supermarkets can toss stale cookies still in their plastic containers into a bin and ship it to Maine or Williston for a big machine to sort out?

And if that separation process leads to polluted farmland, “that would be criminal,” Gilbert said.

“Local food is a major solution to climate change,” he said. “You fuck up our soil, you fuck up our ability to pull on that lever.”

Fabrice Monteiro’s best photograph: a spirit emerges from a rubbish dump in Senegal

Fabrice Monteiro’s best photograph: a spirit emerges from a rubbish dump in Senegal

‘I wanted to create a series of spirits sent by Mother Earth to warn humankind about its neglect and destruction of the environment’

‘The model is holding a child’s doll, looking out over the wreckage. It represents the future generations we’re condemning to environmental catastrophe’

Outside Dakar, Senegal’s capital, is a rubbish dump with its own name: Mbeubeuss. The land on which it sits was once flat swampland. It began as a landfill site in 1968; today, it is a mountain of rubbish. It has accumulated so much plastic waste from the city that to reach it you have to drive on a road of compacted trash.

This is not the Africa I grew up in. As a child here in the 1970s and 80s, it was not like this. But when I returned in 2012, I was shocked at what I found. Here in Senegal, there was plastic waste everywhere – at roadsides, in trees, everywhere. The younger generation don’t know any different: it’s just part of their environment now. I decided I wanted to shoot a series to raise awareness of environmental issues in Senegal, in the hope that people would realise that things do not have to be this way. I wanted to connect environmental issues with the cultural interests of the population, and started researching animism – the belief that objects and the natural world are imbued with spirits.

Animism is connected to nature: it was about praising nature in all its different elements, working with it not against it, and living in harmony with it. Much of that was lost with globalisation and the modern way of living. With this series, I wanted to create a series of spirits sent by Mother Earth to warn humankind about its neglect and destruction of the environment.

Each of the shots in the series addresses one environmental concern: coastal erosion, oil spills, sanitation and the burning of the land for agriculture, for example. But this image, the first I shot for the series, was about plastic consumption.

I had the idea to make a dress that was a continuation of the trash mountain, so it looked as though this spirit was emerging from the piles of rubbish. I collaborated with a Senegalese stylist called Doulsy who had been working with recycled materials and can sew pretty much anything: he was the perfect person to create this costume. It needed to have a sense of scale: the model is sitting on a barrel of oil to give that height to the figure. We wanted to strike a balance between working with abandoned materials and making something that looked like a fashion editorial.

But more than anything this image is a message: the model is holding a child’s doll, looking out over the wreckage. It represents the future generations that we’re condemning to environmental catastrophe through our overconsumption.

At first, I only intended to make 10 images. They were all going to be shot in Senegal, and distributed to people here. But I felt uneasy when the work was finished: it felt like I was drawing attention to Africa for the wrong reasons. I was concerned it made the continent look uniquely polluted, as though this isn’t a problem all over the world. The only reason Europe doesn’t look like this is because it ships its waste out to us.

So I continued the series, shooting all over the world, from Australia and the destruction of the coral reefs to the US and the damage wrought by coal mining. My work is about unity, about revealing the ways in which we are all connected, to each other and to nature. Taking this series global helped achieve that.

My work has always been a mix of different things, a kind of blending of different disciplines and cultures denoted in the French word métissage. I’m European and I’m African. I grew up in a culture heavily influenced by voodoo, while also reading western comics. I’m a fashion photographer but I’m also an industrial engineer. My work represents all of that.

Across all I do, I’m interested in identity and how we separate ourselves from those we consider the “other”. Throughout history, humankind has created an idea of the other in order to justify his or her exploitation. It is an idea that was central to slavery and colonialism. But it’s also at the heart of our approach to the environment. Only because we see ourselves as apart from the natural world, or superior to it, can we continue to treat it this way.

Today, people talk about the anthropocene era: a geological term for a time in which nature is being fundamentally changed by humanity. But it suggests that humanity as a whole, not the specific capitalist system we have created, is the problem. In fact, it is the system that is the problem, and the system that needs to be opposed.

Photographer Fabrice Monteiro.

Fabrice Monteiro’s CV

Born: Namur, Belgium, 1972.
Trained: Self-taught.
Influences: Alexander McQueen, Malcolm Ferdinand.
High point: “Realising that I can make a living from my creative work.”
Low point: “Working on environmental subjects and understanding how dire the situation is. It scares me.”
Top tip: “Always try to explore outside boundaries.”

Fabrice Monteiro has been shortlisted for Prix Pictet prize, to be announced on 15 December. The work of all 12 shortlisted artists will be at the V&A, London, from 16 December.

The sustainable industrial revolution is just getting started

Heavy industries like shipping, steel and plastics have long opted out of climate action. That is starting to change.

This article is part of our latest DealBook special report on the trends that will shape the coming decades.


Heavy industry uses roughly 149 million terajoules of energy annually, or about 700 times more power than the most powerful nuclear weapon ever detonated. The sector’s sheer scale makes reducing its carbon emissions difficult.

It would require incredible amounts of heat and power for manufacturing and methods to store vast amounts of power for jets, tankers, and trucks. Trillions of dollars in global assets would need to be retired. And the main sectors in play — aviation, shipping, steel, plastics, aluminum, cement, chemicals and trucking — represent massive swaths of the economy, making it a political third rail of climate change action.

But a combination of policy work, technological leaps and industry collaborations has made previously improbable changes into rallying points for more action.

“You’ve actually got to move the whole economy,” said Helen Clarkson, the chief executive of Climate Group, a global nonprofit. “We don’t just get a free pass because it’s more difficult.”

RMI, an organization in Colorado focused on sustainability that was previously known as the Rocky Mountain Institute, estimates that steel production, shipping, aviation and trucking alone contribute 40 percent of global carbon emissions, and if left untouched, will eat up twice the remaining global carbon budget to stay below 1.5 degrees Celsius of warming by 2050.

There are still immense hurdles, including funding, policy support and unsolved technological challenges. But coalitions and industry groups, including the Energy Transition Commission, which released a 2018 report about such a transition, and Mission Possible Partnership (with support from RMI) have created detailed road maps for sector transformation. The Climate Group’s Steel Zero plan to build demand for carbon-free steel, begun in December, would have been ignored a few years ago, Ms. Clarkson said, but already counts leading global construction firms as supporters.

Can some of history’s highest-polluting industries be trusted? Cate Hight, a principal at RMI, admits that greenwashing is possible. But the improving accuracy of digital tools that third-party groups use to track emissions means corporations can be held more accountable.

To understand how rapidly the ground is shifting, look at steel, a global industry synonymous with smokestacks and responsible for 7 percent of CO2 emissions. Green steel isn’t just a vision, but a reality.

Jonathan Nackstrand/Agence France-Presse — Getty Images

Beginning in 2016, the Swedish steel maker SSAB began developing a fossil-free steel process called Hybrit, which is being tested by the automakers Volvo and Mercedes-Benz.

The pilot process, where iron ore is refined, or reduced, with green hydrogen and renewable energy into oxygen-free sponge iron, which is then shaped with electric arc furnaces into finished steel, will scale up to an operational commercial plant by 2026, which will produce 1.35 million tons of sponge iron annually, said SSAB’s chief technology officer, Martin Pei. Competitors such as ArcelorMittal, Midrex and U.S. Steel have also invested in cutting carbon.

Though positive, these steps represent just a start. The Mission Possible Partnership, a climate alliance between industrial leaders, financiers and policy groups like RMI, estimated that the steel industry needs to invest $30 billion every year just to meet increased demand; another $6 billion is needed to make that all net-zero compliant. Green hydrogen presents a particularly lofty challenge; decarbonizing all heavy industry with this high-potency option would require so much electricity that current global electrical generation would need to double, according to RMI.

Other heavy industry sectors have focused first on reducing rather than completely eliminating their carbon output.

Efficiency excites Ben Schuler, founder and chief executive of Infinitum Electric, a start-up based in Round Rock, Texas, that makes electric motors that are half the size and weight of the standard. His firm’s air-core engines represent a big leap in sustainability; Caterpillar and Rockwell Automation are investors, while the federal government’s Green Proving Ground, which tests nascent building tech in federal buildings, is evaluating Infinitum products for potential wide scale deployment.

Cindy Elizabeth for The New York Times

Half the electricity in the United States is used to power electric motors, and roughly a third of the growth in global energy demand in the next two decades is expected to come from industrial motors, including those that power fan and heating, ventilation and air-conditioning systems; compressors; alternators; factory machines; and heat pumps.

“There’s a cleaner, better way to do the exact same processes we’ve done for the last 100 years,” said Mr. Schuler, who expects to deliver 15,000 motors in 2022. “It’ll just take a thousand, or tens of thousands, of other companies like us with good ideas doing their part.”

The uncertainty of such a shift has Ms. Hight convinced the right pathway is “silver buckshot instead of a silver bullet,” an everything-at-once approach that includes electric motors, vast expansion of renewable power and investment in hydrogen technology.

Despite the daunting task ahead, some are optimistic that heavy industry can both shrink its carbon emissions quickly and profit while doing it.

In a wide-ranging report released this summer, RMI’s co-founder Amory Lovins argues that electrification, evolution and the efficiency of clean power will bring about a shake-up that creates “trillions of dollars in creative destruction.” The cost of change is radical, but so is the potential return, he wrote: “We’ll learn that many problems look impenetrable until someone cracks them.”

How the chemicals industry’s pollution slipped under the radar

How the chemicals industry’s pollution slipped under the radar

The industry consumes more than 10% of fossil fuels produced globally and emits an estimated 3.3 gigatons of greenhouse gas emissions a year, more than India’s annual emissions.

While the industry has an important role to play in moving to low-carbon economies it’s also hugely carbon intensive and predicted to become more so

It’s one of the biggest industries in the world, consumes more than 10% of fossil fuels produced globally and emits an estimated 3.3 gigatons of greenhouse gas emissions a year, more than India’s annual emissions – yet the chemicals sector has largely slipped under the radar when it comes to climate.

This sprawling industry produces a huge range of products, many of which support other industries – pesticides for agriculture, acids for mining, lubricants for machinery, ingredients in cleaning agents, cosmetics and pharmaceuticals and plastics.

While the industry has an important role to play in moving to low-carbon economies – providing coatings for solar panels, lightweight plastics to reduce vehicles’ energy consumption and insulating materials for buildings – it’s also hugely carbon intensive and predicted to become more so. Oil companies have been betting on chemicals as a way to remain profitable as the world pledges to turn away from fossil fuel energy. The International Energy Agency predicted that petrochemicals could account for 60% of oil demand in the next decade.

The chemicals sector is the largest industrial user of oil and gas but it has the third-largest carbon footprint – behind steel and cement – because only about half of the fossil fuels that the industry consumes are burned for their energy. The rest is used as feedstock for products such as plastics with the emissions released only when these products reach the end of their lives, for example, when waste plastic packaging or an old mattress is incinerated.

Lowering the industry’s emissions is possible but technically daunting. Plus this large, complex industry, which supports millions of jobs worldwide, has significant political and economic clout. “They’ve become a bit of an untouchable sector for many politicians,” said Jan-Justus Andreas, who leads industrial policy at the Norwegian environmental non-profit Bellona Europa.

Yet the chemicals industry is finding itself increasingly under scrutiny – both from nations that need to meet ambitious emissions reduction targets and from researchers, scientists and campaigners calling on the industry to cut its polluting products.

Moving away from dirty energy

One way to lower emissions is to focus on chemical plants – improving efficiency and switching to low-carbon energy.

Most of the industry’s direct carbon dioxide emissions come from burning fossil fuels to power chemical transformations, many of which take place at high temperatures and pressures. These emissions could be significantly reduced if the industry moves away from dirtier fuels such as coal.

If renewable wind or solar energy is available, certain chemical processes that are already driven by electricity, such as the production of chlorine used to make other materials such as PVC pipes or solvents like chloroform, could immediately become low carbon. And chemists continue to look for ways to power traditionally heat-driven chemical transformations with electricity instead – such as the process of converting nitrogen to ammonia, mostly used for fertilizer, which requires temperatures of about 500C (932F).

Wind turbines on Ince Salt Marshes near to chemical and manufacturing plants on the River Mersey estuary.

While chemical companies are counting on efficiency improvements and investing in renewable energy to meet their climate goals, many chemical products themselves cannot be decarbonized because they are made of carbon, said Martin Scheringer, an environmental chemist at the public research university ETH Zurich.

Removing fossil fuels from the raw materials used to create carbon-based chemicals and materials is crucial, said Jonatan Kleimark of the non-profit ChemSec. Kleimark likens products made from fossil fuels – such as clothes, toys and paints – to a carbon debt, because the carbon embedded within them will only be emitted in the future. “The longer we wait to change, the larger debt we will build, and that will be very hard to do something about if we don’t start,” Kleimark said.

To stop adding to this debt, chemicals and materials could be made with sources of carbon that are already above ground, such as plants. Bioplastics – made with plant materials such as sugar, corn or seaweed – are booming, for example, as companies and scientists try to remove fossil fuels from plastic production.

Another idea is to turn waste products into raw materials for the chemical industry. Chemists have been using agricultural waste or waste plastics – even the ultimate waste material, carbon dioxide – as feedstocks. A Berlin-based startup, Made of Air, is attempting to create plastics from wood waste, while an Icelandic company, Carbon Recycling International, turns captured carbon dioxide emissions into methanol, used in fuels and for making other chemicals such as formaldehyde.

‘Why don’t you deal with someone else first?’

But all these ideas – especially those involving a shift in feedstocks – are very hard to implement.

Technologies to turn agricultural or plastic waste into new chemicals are still unproven on a large scale and using carbon dioxide as a raw material will require vast amounts of zero-carbon energy.

Manufacturers making products with plants rather than fossil fuels need to ensure that they do not create new problems through deforestation, destroying wildlife habitat, raising food prices or increasing the use of water or pesticides. Biomass resources also tend to be more spread out, whereas traditionally, chemical plants stay close to where fossil fuel resources are easily accessible.

ExxonMobil’s Baton Rouge refinery in Louisiana. The petrochemical plants inside the complex make materials used in products such as diapers, chewing gum, tires and makeup.

“With renewable feedstocks, you will need to reestablish new supply chains,” said Zhanyun Wang, a senior scientists at ETH Zurich. In addition to delivering a steady stream of renewable raw materials to chemical plants, the new supply chains would need to be competitive with well-established ones making products from fossil fuels at low prices, Wang said.

The clean power infrastructure requirements alone are tremendous. Electrifying Europe’s chemicals sector would require 4,900 terawatts of renewable electricity, according to an estimate by the European Chemical Industry Council, almost double the total amount of electricity Europe generated in 2019.

“If you are a lobbyist for the chemical sector, showing those numbers helps you to put your head down again and say, ‘Look, firstly I’m too important and valuable, and secondly, it’s really, really difficult to deal with me, so why don’t you deal with someone else first,’” Andreas said.

Currently, that someone else refers to the cement and steel industries, said Andreas. The internal competition between the three industries to avoid scrutiny is unhelpful, he said, because they could benefit from developing an industrial strategy together.

The exhaust gases from steel and cement plants could serve as valuable feedstocks for chemical plants. All three industries need large-scale renewable electricity or carbon capture facilities, which require significant investment. The financial risks involved in building these new facilities could be mitigated, Andreas said, if the new facilities serve multiple operations instead of a single steel mill or fertilizer plant.

Governments could also help build the necessary infrastructure or help companies gain access to renewable feedstocks, said Rebecca Dell, who directs the industry program at the San Francisco-based ClimateWorks Foundation.

But with less than 30 years to 2050, time is short. If there are no delays, typically, it takes about seven years for companies to get a new process up and running, Dell said. “We have to move a lot faster.”

Simplifying products

One important, but neglected, lever for cutting emissions from the chemical sector is to simply use and produce fewer chemicals. “That would lead very directly to a reduction in CO2 emissions and also reduce the toxification of humans and the environment,” Scheringer said.

The overuse of materials such as plastics, fertilizers and other synthetic chemicals has caused devastating effects on ecosystems and human health. Plastic debris chokes waterways and wildlife, fertilizer-laden runoff from fields can cause algal blooms and create dead zones in coastal areas.

An algae bloom on Lake Erie near Toledo, Ohio. The causes of these blooms vary but they are increasingly being linked to fertilizer runoff.

These impacts have led policymakers and consumers to cut back – for instance, many cities and countries now have prohibitions on some single-use plastics. “It’s an attempt to reduce plastic itself as a pollutant in the landscape, more than concerns about greenhouse gases, but we can make simultaneous progress on more than one front,” said Dell.

Studies have also found that being more precise about applying fertilizer could save farmers money and keep greenhouse gases out of the atmosphere.

It is less straightforward to cut back on some of the chemicals that are used to make consumer products, but Scheringer, Wang and others have proposed a way to start. Alarmed by the dangers of some cancer-causing PFAS, also known as “forever chemicals”, researchers have suggested eliminating PFAS from their “nice-to-have” applications – such as nonstick cookware, long-lasting mascara, or water-repellent surfer shorts that don’t need the level of high performance that “forever chemicals” confer.

The researchers recommend that “forever chemicals” be used only in really important products, such as protective gear or medical devices that save lives. The same philosophy could be applied to identify and eliminate other chemicals that have been unnecessarily formulated in products, such as adding antimicrobials to soaps that can already kill germs.

Simplifying the chemical ingredients in products has an added benefit: they are easier to take apart or recycle when they are no longer useful. Wang points to the example of carbon black, the chemical used as a pigment in food takeout boxes. The pigment serves no technical function other than providing colour and it is used because food looks more appealing set against a black background, Wang said. But the pigment also means the takeout boxes are invisible to devices that use light to sort plastics at sorting facilities, making them impossible to recycle.

The chemical sector is producing more than consumers need, Wang said: “The business model is driven by how many chemicals you sell, it’s not necessarily driven by the added societal value of the chemical.”

But the “enormous demand” for products is also a big driver – and perhaps harder to address, said Kleimark. “We’re standing in front of a really, really big challenge because there we cannot rely on technologies, but on changing the way we do things today.”

British beaches plagued with ‘plastic pollution which looks like just like pebbles’

Pyroplastics look just like real pebbles (University of Plymouth)

Pyroplastics look just like real pebbles. (University of Plymouth)

Campaigners have warned that British beaches are being inundated by a form of plastic pollution that looks exactly like rocks.

The so-called ‘pyroplastics’ are believed to be remnants of plastic that has been burnt or melted, researchers said. They have been spotted this week in Wales.

Hilary Rowlands, a founding member of Tywyn Beach Guardians in Gwynedd, told North Wales Live: “It’s only when you pick them up, and feel how light they are, that you realise they are not stones at all.

“There’s not a single beach I’ve combed where I haven’t come across them. Sometimes they are covered in oil or impregnated with the toxins that come from burning plastic.

“It’s all dangerous, both to the environment and the marine life.

Read more: Melting snow in Himalayas drives growth of green sea slime visible from space

“The longer-term concern is that they will break down into microplastics and threaten marine food chains.”

Pyroplastics look almost exactly like pebbles, and are created when plastics are heated during manufacturing processes.

Researchers began to analyse the ‘rocks’ in recent years after people spotted them on beaches in Cornwall – initially thinking they were real pebbles.

The lumps of plastic also weather like real rocks, and shed microplastic into the environment.

Some of the lumps could be as much as half a century old, according to Andrew Turner of the University of Plymouth.

Read more: A 1988 warning about climate change was mostly right

Turner writes: “Pyroplastics are derived from the burning of plastic. Some may look like various burnt pieces of plastic amalgamated together, while others look remarkably like pebbles once they have been eroded down by the elements.

“They have probably been in existence since we started burning plastic to dispose of it (perhaps 80 years or so). Some of the now restricted chemicals we find in pyroplastics suggest they have been around since at least the 1960s.

“Burnt plastic on beaches is likely to be derived from many sources, including burning waste on the beach itself, collapse of old landfill sites, historical burning of waste at sea and contemporary burning of plastic waste on small island states.”

Pyroplastics are found worldwide, with samples having been located on Atlantic beaches in Spain and the Pacific beaches of Vancouver.

Watch: Nigerian artist’s installations draw attention to world’s plastic waste

Microplastics in household dust could promote antibiotic resistance

PLASTICS ARE man-made materials that are unnatural to this world, but that does not stop the natural world from interacting with them. Indeed, dozens of studies show that when plastics get into the sea many ocean-dwelling microorganisms aggressively colonise them. This might help break plastics down, but these oceanic colonies are also hotbeds of antibiotic-resistant genes. Now, it seems, something similar might be going on in the dark recesses of your home.

Listen to this story

Enjoy more audio and podcasts on iOS or Android.

Lei Wang suspected as much, and along with his colleagues at Nankai University in Tianjin, China, set out to gather the necessary evidence. Their search began at an apartment building in Tianjin. The plastics Dr Wang was concerned about are the tiny bits that break away from synthetic fibres, like polyester and nylon, commonly found in clothing and other textiles. The microplastics then accumulate around the home as dust. He reasoned that if these particles were being colonised by bacteria then they too might be harbouring antibiotic-resistant genes.

The researchers chose ten homes in the apartment block, each with just one male tenant. Each apartment had hard flooring, rather than any carpets, and a similar general layout. A team used sterilised brooms to sweep the bedrooms and to collect dust samples as they went. These samples were then brought back to the lab and analysed for microplastics, bacteria and antibiotic-resistant genes.

As they report in Environmental Science and Technology, 21 types of microplastics were found, the most common from polyester and nylon. Using DNA extracted from microbes, they identified 1,385 genera of bacteria along with 18 genes associated with antibiotic resistance.

The analysis also revealed that the apartments with dust that were rich in microplastics had bacterial communities that were different from those apartments with dust that did not contain as many microplastics. Crucially, the work also showed that the relative abundance of antibiotic-resistant genes was higher in the presence of microplastics than it was when these were less common.

Precisely why microbes dwelling with plastics are more likely to carry antibiotic-resistant genes is not clear. It is possible that plastics themselves are driving bacteria to develop this trait. The researchers suggest, however, that it is more likely that specific groups of bacteria are capable of eking out a living on plastics, and these bacteria also happen to be of a type that more readily develop antibiotic resistance.

To support this argument, Dr Wang points out that Proteobacteria is both highly antibiotic-resistant and also commonly found encrusting oceanic plastics. Members of this same phylum were the most common type found among the polyester and nylon fibres swept up in the apartments, too. This suggests that, just as plastics are changing the nature of bacterial communities out at sea, they are also changing them within homes. How much of a threat this will ultimately be to human health is not known, but it cannot be doing people much good.

To enjoy more of our mind-expanding science coverage, sign up to Simply Science, our weekly newsletter.

This article appeared in the Science & technology section of the print edition under the headline “Perilous plastic”

Margaret Wertheim: Even plastic coral artwork can't survive climate change

While world leaders dither about how to tackle climate change, an eerie echo of global warming’s destructive power has been playing out in a project created as an artistic response to this apocalypse. Even art can be destroyed by the toxic effects of our runaway carbon emissions. Even plastic art.

In 2005, around the time scientists were recognizing that abnormal patterns of coral bleaching were related to rising ocean temperatures, my sister and I started to crochet simulations of living reefs. It was art meets science meets environmental catastrophe channeled through the medium of a handicraft we’d grown up with. Crochet wasn’t an arbitrary choice, for the frilly, crenelated forms of real coral organisms are biological manifestations of hyperbolic geometry — a mathematical structure easily emulated with crochet.

To our surprise, our “Crochet Coral Reef” has blossomed into a community art project spread across the planet, with now nearly 20,000 crocheting participants in 50 cities and countries, almost all of them women. We have worked with crafters to create crochet reefs in London, New York, Chicago, Melbourne, Abu Dhabi, Latvia and many other places. Woolly reefs are currently underway in Germany and Canada, and in New York state and North Carolina. But it was in Finland where the forces of destruction recently played out.

Nonfungible tokens are a dressed-up species of bookkeeping. But what art needs is less auditing and more ecstasy.

As part of the Helsinki Biennial this year we were invited to work with citizens there, and an astonishing 3,000 Finns took part. During COVID-19 lockdowns many people everywhere turned to crafts as a calmative force, and crocheting corals also offers a purposeful rejoinder to environmental devastation. Just as living reefs are made by millions or billions of tiny coral polyps, so our reefs are generated by thousands of crocheters working together. Both biological and crafty reefs exemplify the power of collaboration at scale. The Great Barrier Reef, which served as the inspiration for our project, is the largest living thing on Earth, and one of a few organisms visible from outer space.

Detail of plastic crocheted coral reef

A detail of the plastic crocheted coral.
(©Institute for Figuring by Margaret Wertheim)

In addition to crocheting in yarn, we asked the Finns to use plastic. My sister and I have been crocheting plastic into corals since we learned about the horror of the Great Pacific Garbage Patch in 2006. How ironic that as living reefs disappear, giant whorls of plastic trash are forming in the ocean, as if a kind of synthetic replacement were going on.

It’s hard now to buy anything not packaged in plastic. Remember those pandemic months when we stockpiled toilet paper, each jumbo pack swaddled in a see-though plastic membrane? This emblem of viral infection became a feature of the Helsinki project when local reef organizer Lotta Kjellberg approached a manufacturer of toilet packaging about possible crafty byproducts.

As toilet paper packaging film rolls off the production line, an inch-wide strip is cut from the edge, making a perfect medium for crochet. Two hundred kilos of the stuff was delivered in a dumpster to Kjellberg’s door. In a time-consuming act of devotional recycling, she distributed it around Helsinki to libraries, craft stores, community centers, schools and senior citizens’ facilities. Tinted an elegant blueish-violet and dotted with pale splashes of ink, its availability in such quantity enabled the creation of a huge number of color-coordinated plastic corals. We could not have wished for a better scenario.

Two Steps is a perfect snorkeling spot on the Big Island of Hawaii.

In my first foray out of Highland Park in 15 months, I flew to Helsinki in May to work with a team of local ladies to shape thousands of individual crocheted pieces into large-scale sculptures. Along with the violet and whites of the loo-paper packaging were sparkling black videotape corals, plus others in reds, yellows and blues made out of gift-wrapping ties, grocery bags and various synthetic detritus. All of it recycled material.

The four resulting artworks were magnificent testimonies to community-centered art. Gorgeous, absurd, lavish forms bursting with life — together they formed a faux ecology that rehabilitated rubbish through female craft.

But over the summer, Finland experienced one of the hottest, wettest periods in its recorded history. Farther north, the Greenland ice sheet was also drenched in rain, an unheard-of phenomenon — it never rains in Greenland — and an ominous sign of the forces being unleashed in our atmosphere.

At the Biennial, most of the artworks were displayed on an island off Helsinki in a series of stunning abandoned fortifications. Unfortunately, the rooms became infested with mold. Other artists’ projectors burned out, sound systems fritzed, video screens dripped with slime. But these were solvable problems. For the corals a more permanent tragedy ensued.

Blobs of mold blossomed on the pedestals and understructures of the works. Possibly it had creeped into the crochet stitches too. Now, instead of traveling on to other exhibitions, these beautiful monsters have had to be destroyed.

Art has imitated life. Even crocheted plastic sea creatures can’t withstand the consequences of humanity’s petrochemical ensorcellment. Killed off by climate change, this unique colony of Helsinki corals has disappeared, echoing the fate of its living cousins who also soon may be mere memories.

Margaret Wertheim is a science writer and artist. The “Crochet Coral Reef,” created with Christine Wertheim, has been exhibited at the 2019 Venice Biennale and many other international venues. crochetcoralreef.org

‘Drowning’ in waste: Australia recycled just 16% of plastic packaging last year

‘Drowning’ in waste: Australia recycled just 16% of plastic packaging last year

Report described as ‘sharp wake-up call’ finds recycling has flatlined since voluntary plan was introduced in 2017

Empty plastic bottles

Australia is failing to meet its own plastic reduction targets, with just 16% of plastic recovered last year despite more than half of packaging found to be easily recyclable, a new report shows.

The latest progress report released by the Australian Packaging Covenant Organisation (Apco) found plastic recycling has flatlined since a voluntary plan was implemented in 2017.

The Australian Marine Conservation society plastics expert Shane Cucow said the report should be a “sharp wake-up call” for the federal government and business sector.

Australia has set targets for 70% of plastic packaging to be recycled or composted by 2025, and unnecessary single-use plastic packaging to be phased out.

However, the report found that with the current recycling upgrades in place, Australia will be able to recycle only 36% of plastics annually by 2025.

Of 1.1m tonnes of plastic packaging placed on the market last year, only 179,000 tonnes were recovered.

Products with recycled plastic content also remain low, accounting for just 3% of plastic packaging on the market.

Cucow said that despite many domestic companies touting sustainability, Australia was still “asleep at the wheel” in responding to the growing problem of plastic waste.

“We’ve been encouraged by moves to ban key single-use plastics, and investments to build new recycling infrastructure, but it is still too little too slowly when it comes to plastic packaging,” he said.

“One thing is abundantly clear: if we keep on the way we are, we’ll never make it past the halfway point as the tidal wave of plastic continues to fill up our oceans and our landfills.”

Cucow said voluntary targets weren’t working and greater incentives and penalties were needed to encourage companies to increase recycling uptake, particularly among soft plastics.

About 4% of soft plastics, commonly used for food packaging, were being recycled in Australia despite it being the most lethal consumer plastic for ocean wildlife.

“There’s simply not enough demand for recycled plastic because virgin plastic is cheaper and easier to obtain,” Cucow said.

“It’s time for the Australian government to level the playing field with a levy on virgin plastic and mandated targets for recycled content.

“It’s also high time all the big product manufacturers took responsibility for the environmental devastation their packaging is causing … Australia is drowning in a sea of plastic.”

Boomerang Alliance director Jeff Angel said the report was a “shocking indictment” of the voluntary nature of Australia’s recycling targets and mandatory targets were needed to reach the 70% plastic-packaging recycling goal.

‘’The bright spots on banning single-use plastic items and accelerating recovery of drink containers under container deposit schemes are the direct result of legislation, not APC action,” he said.

“The report repeats more of the same mantra about voluntary action to develop more plans, encourage investment and collective action. These are just words. Government needs to step in to stop the waste, protect the environment and get the packaging industry on the path to quick results.

“The packaging covenant has missed too many goals and should not be given another chance. We’ll give them credit for admitting failure and being transparent but that must mean they join with us to craft an effective regulatory response now, rather than wait till 2025.”

Apco chief executive Brooke Donnelly said the report showed that if Australia was to achieve its 2025 national packaging targets, “we all need to do more and the time to act is now”.

“We have seen fantastic progress so far towards the targets, but … the gaps identified in the report require significant attention and we need to see a wholesale collaborative effort from actors across the supply chain,” she said.

“It’s absolutely critical that businesses across every industry sector engage with this report and discuss within their organisations how they will work to address these gaps.”

US throws support behind treaty to curb plastic

Issued on: 18/11/2021 – 10:04Modified: 18/11/2021 – 08:59

Nairobi (AFP) – The United States on Thursday threw its support behind negotiations on a treaty to curb plastic pollution, ending a key holdup in international efforts to clean up the planet’s oceans and save marine life.

Advertising

On a visit to the United Nations Environment Programme in Nairobi, Secretary of State Antony Blinken said the United States would back talks in the Kenyan capital in February on a treaty to address plastic.

“Our goal is to create a tool that we can use to protect our oceans and all the life that they sustain from growing global harms of plastic pollution,” Blinken said.

“As we know, our health — our survival — is bound up in the health of our oceans. We have to do more to protect them,” he said.

About eight million tonnes of plastic end up in the oceans each year, killing or injuring one million birds and more than 100,000 marine mammals, according to UN figures.

Blinken’s statement is the latest US effort to ramp up environmental protection under President Joe Biden, who has made the fight against climate change a key domestic priority.

Likely mindful of political realities in divided Washington, where treaties need ratification by the Senate, Blinken called for a plastic treaty in which countries would come up with their own plans of action.

The United States, however, has seen bipartisan calls to clean up oceans with former president Donald Trump signing an act aimed at curbing plastic pollution in the oceans.

But environmentalists say that the previous administration stymied international efforts by opposing a treaty and blaming the problem squarely on China — a major source of plastic processing but of material often coming from the West.

In 2019, the United States did not join around 180 governments which agreed in Geneva to create a legally binding framework to regulate plastic waste.

The United States did not vote as it is not party to the Basel Convention, a UN treaty reached in 1989 that regulates the movement of hazardous waste.

COVID's retail riddle: Is e-commerce better for the environment?

.cms-textAlign-left{text-align:left;}.cms-textAlign-center{text-align:center;}.cms-textAlign-right{text-align:right;}.cms-magazineStyles-smallCaps{font-variant:small-caps;}

As millions of Americans hunkered at home during Covid lockdowns, the internet became more than a way to do their jobs or pass the time — it became a central way they shopped for goods like groceries, hot meals, furniture and clothing.

The pandemic, in effect, hit overdrive on a decadeslong shift toward online shopping. E-commerce sales jumped nearly 32 percent in 2020 compared to the prior year, according to U.S. Census Bureau data. So far this year, online sales are on track to outpace that record. To meet the demand, delivery companies such as Amazon, FedEx, UPS and food delivery services wrapped millions of purchases in layers of cardboard and plastic and hired thousands of new drivers to bring them to our doorsteps.

Now, cities, climate scientists and companies are trying to figure out the consequences for the planet.

The answer isn’t clear-cut. Consumers drove fewer miles to and from stores, while delivery companies drove more — so what was the net effect on greenhouse gas emissions? Offices and restaurants generated less waste, but all that food and packaging delivered to homes added to trash pickups from residential neighborhoods. Which is worse for landfills? And does it even matter, when overall we are consuming more than ever before?

“People have been asking this question since the Internet was invented,” said Scot Case, vice president of corporate social responsibility and sustainability at the National Retail Federation. “But it probably isn’t helpful, because e-commerce is happening, period, and people are shopping online, in-store or some hybrid of the two. So, I think the real question is, how do we make all of those options as sustainable as possible?”

In the decade or so prior to Covid, fewer than 10 academic studies explored whether e-commerce or in-person shopping is better for the environment. In general, the studies that were done found that online shopping produced fewer carbon dioxide emissions than traditional brick-and-mortar retail.

However, few accounted for the enormous variability in those supply chains, from consumer behavior to logistics to waste. For instance, whether an in-store shopper bought one or multiple items affects the climate calculations. So does the type and amount of packaging, along with whether those items were later returned. The distance to and from stores and distribution hubs is key, as is the mode of transportation: A gas-powered vehicle, a bike, or an electric car? What if that electric car was powered by a grid running on fossil fuels? What is the different impact of heating and cooling stores and warehouses?

These questions became more urgent during Covid as people shopped more and, perhaps paradoxically, became more concerned about sustainability.

Online shopping surged during the pandemic

E-commerce sales, as a percentage of total retail sales

The most recent research is starting to incorporate more of the complexities of retail. In January, MIT’s Real Estate Innovation Lab published a study that simulated hundreds of thousands of those kinds of scenarios and found online shopping to be more sustainable than traditional retail 75 percent of the time.

But consumers today aren’t choosing one or the other, underscoring just how tricky this assessment is. So the MIT researchers recommended how shoppers and policymakers could instead help reduce carbon footprints at various steps of the supply chain, because either way, people are buying more.

“This is so much more complicated than, ‘E-commerce is better than brick and mortar,’” said Andrea Chegut, director of the lab. “We’re not on a good trajectory, because everyone is using both strategies. So on the aggregate, there will be more emissions.”

However theoretical it might seem, the question of the environmental impact of shopping has real consequences. The entire supply chain of everything we consume — from the extraction and processing of natural resources into products that are shipped to us and then used and disposed of — accounts for half of global emissions, according to the United Nations. The U.N. also estimates that global material use could double in the coming decades.

Brands and retailers are at the nexus of those supply chains. And only recently have major companies started mapping the entire carbon footprint of their sprawling networks, identifying sources of emissions and setting goals to reduce them. For many, third-party suppliers and customers account for the majority of their climate pie.

There are millions of retailers in the U.S. Of those, nearly 40 top companies have either set science-based targets to slash their total carbon footprints in alignment with the Paris agreement, or pledged to do so, the National Retail Federation found. Those retailers include Amazon, H&M, Ikea and Walmart.

At first brush, it appears that there are three key areas where e-commerce and traditional retail diverge: the last mile (whether a product was delivered or a consumer made a trip to buy it), the buildings (storefronts or warehouses) and the packaging waste.

Most research suggests that ordering goods for delivery is more beneficial for the environment because it means people are making fewer individual shopping trips. The average U.S. consumer goes to the grocery store at least 300 times a year. If they drove there, it was likely in a gas-powered vehicle. Plus, there tends to be higher energy demands at storefronts compared to warehouses.

But that scale “could easily tip in the other direction,” according to a study of the U.S. market published last spring by the sustainable investment firm Generation. The firm’s researchers found that e-commerce is 17 percent more carbon efficient than traditional retail, but could change with a few tweaks to their assumptions, such as the number of items purchased in a single visit, the amount of packaging and the efficiency of last-mile delivery.

In January, the World Economic Forum also found that growing demand for delivery could spike emissions and traffic congestion by more than 30 percent in the world’s top 100 cities by the end of the decade. The report accounted for the emissions saved from fewer individual shopping trips but didn’t consider packaging, and recommended that companies switch to electric vehicles, consolidate hubs for packages and boost nighttime deliveries.

But increasingly, the lines between online and in-store are getting blurred.

A lot of e-commerce growth is within the “omni-chain,” the supply chain shared by both in-store and online components, said Mark Matthews, NRF’s vice president of research development and industry analysis. Retailers are selling products via multiple channels, and consumers are using all of them — items bought online can be delivered to doorsteps or to a physical store for pickup. Americans might return it online or bring it back to the store. The way companies report that data makes it difficult to parse what is truly online and what is blended, Matthews added. He also noted that the second quarter of 2021 marked the first-time brick and mortar sales grew faster than online in decades.

It might be why climate advocates have focused less on the impacts of online shopping, and more on decarbonizing specific industries in the supply chain.

“It’s not really about which one is better, because both have pluses and minuses,” Boma Brown-West, director of consumer health at the Environmental Defense Fund, said. “We’ve seen momentum from companies, but I do think there is more to do in terms of turning sustainability commitments into real results.”

In the United States, no retailer is more synonymous with online shopping and delivery than Amazon, which argues for the environmental benefits of online shopping. In an interview, Amazon spokesperson Luis Davila pointed to findings by company scientists that suggest online shopping produces fewer emissions than driving to shop at a store; for instance, the company estimates that a single delivery van trip can take 100 round-trip car journeys off the road, on average. During the pandemic, customers made fewer trips to Whole Foods Market stores and other brick-and-mortar Amazon locations and shifted to home delivery, which also lowered emissions.

But take a step back, and a bigger, more complex picture emerges.

From 2019 to 2020, Amazon’s U.S. sales jumped 36 percent to $263.5 billion. By the company’s own account, its overall emissions spiked 19 percent, equivalent to running 15 coal plants for one year. More fossil fuel use and investments in buildings, data servers and transportation were key drivers.

That figure reflects its response to consumer demand during Covid-19, but doesn’t capture progress Amazon made, Davila said. He said the company tracks the amount of carbon per dollar of gross merchandise sales — a concept known as carbon intensity — and by that measure, Amazon decreased the amount of carbon per purchase last year by 16 percent. In a blog post in June, a company scientist argued that this metric allows high-growth companies like Amazon to identify efficiencies.

Amazon also reduced emissions from the electricity it bought by 4 percent due to new investments in clean energy, despite expanding its buildings‘ square footage. The company is about two-thirds of the way toward 100 percent renewable energy — a key pillar of the company’s plan to reach net-zero emissions by 2040.

Emissions from deliveries are expected to decrease as Amazon deploys 100,000 electric vans in the coming decade. Davila did not disclose what portion of the company’s fleet that accounts for today.

Big-name retailers such as Target with storefronts across America also are aiming for net-zero emissions by 2040. Target, which has an annual carbon footprint slightly larger than Amazon’s, had an overall increase in previous years driven by rising sales.

While Target has slashed emissions from its own operations and reduced the electricity it buys by 26 percent since 2017, that was not enough to offset the increase from activities in its supply chain — like transportation and consumer use of the products it sells — which jumped 16.5 percent.

To address that, a Target spokesperson said the company remains committed to net-zero emissions. To that end, the retailer is pushing for 80 percent of its suppliers to set their own science-based climate goals by 2023, and is making progress toward its goal of slashing emissions from its own buildings and vehicles in half this decade.

These calculations are top of mind for officials in cities like Santa Monica, Calif., who are concerned about the impact of last-mile deliveries on the environment and public health. There isn’t hard data on that, but Ariana Vito, the city’s sustainability analyst, said anecdotally she’s seen traffic congestion increase, especially during the pandemic.

Southern California is home to the country’s two largest ports. Moving goods is responsible for half of the region’s nitrogen oxide pollution and nearly 11 percent of particulate matter, according to government data. Both are precursors to the formation of greenhouse gases, and long-term exposure can cause the kind of respiratory problems that left so many Americans more vulnerable to Covid-19.

As of October, those ports are running 24/7 to ease supply chain bottlenecks. Companies including FedEx, UPS and Walmart expanded night shifts to get more goods on the road.

Months before, Santa Monica launched the country’s first zero-emissions delivery zone spanning one-square mile of its downtown, where electric delivery vehicles get priority at certain loading zones. They also are testing last-mile deliveries on e-cargo bikes and scooters.

The initiative, in partnership with the Los Angeles Cleantech Incubator, is in the early stages of measuring the effect on emissions, congestion and delivery efficiency. The goal is to expand it to other cities in Southern California before the 2028 Olympics.

“E-commerce is increasing emissions. There is no doubt about it,” said Matt Petersen, CEO of the Cleantech incubator. “It’s no longer just FedEx, UPS and the Postal Service on the road coming once a day. There are multiple deliveries to the same address every day for anything you can imagine.”

The growing number of deliveries arriving in cardboard boxes, plastic bags and other packaging has raised an alarm that online shopping leads to more waste, like the garbage patches floating in the world’s oceans.

Chegut, the director of MIT’s Real Estate Innovation Lab, said one of the most striking findings from her team’s research concerned packaging; they found that cardboard boxes accounted for some of the largest carbon pollutants in the system regardless of the method of delivery. Removing layers of packaging, changing boxes or even removing them altogether could slash carbon emissions by up to 36 percent, the report found.

The packaging problem is exacerbated by the fact that America’s waste infrastructure is ill-equipped to handle all these materials. Most food and packaging ends up in a landfill or is burned to produce energy, generating 105.5 million metric tons of carbon dioxide last year, according to federal data. These facilities are often located in marginalized communities disproportionately exposed to the pollution that incineration creates.

By some estimates, the U.S. may have produced less waste in 2020 because of shutdowns on the commercial and industrial side, from office buildings and restaurants to manufacturers. Those sectors are rebounding, however.

Waste Management, the largest trash and recycling hauler in North America, has more than 4,000 contracts with municipalities across the country and recently reported that it collected fewer tons of waste last year. The company said only about 13.5 percent of it was recycled — a slight boost over the previous year in part because Waste Management has recently invested in recycling facilities.

Brent Bell, the company’s vice president of recycling, said the online shopping craze during the pandemic generated the most amount of cardboard he’d ever seen. There were a lot more bottles and cans and plastic films and takeout containers, too.

While paper and cardboard are recycled at the highest rate of any materials nationwide — 68 percent — plastic is at the opposite end of the spectrum. Only about 9 percent of it is recycled, according to federal data. That’s because flexible plastic films and pouches and many take out containers still aren’t recyclable. Neither are plastic bags, unless consumers bring them to the grocery store. Only then can Waste Management bail them up and sell them to be made into new bags.

Local officials from Baltimore to Minneapolis told POLITICO they saw similar trends last year.

Covid overtaxed Baltimore’s sanitation system. By August of 2020, the city’s waste haulers were overworked, falling ill with Covid, and trash was piling up in neighborhoods across the city. Officials halted curbside recycling for six months so truck drivers could focus on trash collection; all that recycling instead ended up in landfills or was incinerated.

The city got its curbside recycling up and running again in January and hopes a new $9 million investment in new blue recycling carts will boost recycling rates.

In Minneapolis, local processor Eureka Recycling handled 35 percent more aluminum, nearly 24 percent more cardboard and 13 percent more plastic in fiscal 2020 compared to the previous year, according to internal data.

“E-commerce has definitely led to more packaging,” said Kate Davenport, co-president of Eureka.

On the bright side, companies including Amazon, PepsiCo, Coca Cola and Walmart have made promises to buy more recycled materials to use in packaging in the coming years and reduce the amount of material they use, such as virgin plastic, Davenport said.

Amazon’s Davila said the company is working on using as little material as possible, in part by investing in technology that custom-sizes boxes to products so it can eliminate single-use plastic padding.

These are steps in the right direction, but still not enough to create a circular waste stream that eases the strain on natural resources, Davenport said. That will take new public policy.

Eureka and other environmental groups advocate for a policy known as “extended producer responsibility,” which puts companies — rather than taxpayers — on the hook for the costs of cleaning up the packaging and other waste their products create. Maine and Washington enacted laws this summer and at least 10 other states are considering them.

After longtime opposition to extended producer responsibility, business groups such as Ameripen, which represents packaging makers, and the American Beverage Association had a change of heart earlier this year. In order for member companies to achieve their own sustainability goals, they need access to more recycled commodities. That means making sure more of their own products get recycled.

The revenue from the laws could be reinvested into local recycling systems to help process more plastic and other materials. An estimated $17 billion investment over five years is needed to boost recycling rates to at least 70 percent, according to May analysis by The Recycling Partnership.

To date, companies have invested a small fraction of that.

At the end of the day, global consumerism has had the single-largest environmental impact of any human activity and no one actor alone will solve the problem, said Brown-West of the Environmental Defense Fund.

Companies can make a big dent by improving the sustainability of their products and using their enormous influence over supply chains to help decarbonize the energy, transportation and building sectors. They can work with city officials to locate distribution centers closer to people. They also should support new climate policy, Brown-West said.

Consumers also have more power than they may realize, said Chegut of MIT.

In study after study, taking fewer trips to the store, bundling purchases and avoiding returns can all make an impact. Just owning an electric vehicle isn’t a silver bullet.

“We learned that, if you own a Tesla in major coal energy states, that’s almost as bad as going to the supermarket every day,” Chegut said. “So, my biggest takeaway is to be a more mindful consumer. Try not to get in the car to go shop. If you do, make it a big shopping trip to avoid multiple trips. Walking and biking always wins.”

And then there’s simplest solution, regardless of whether we shop online or in person: “We could also buy less,” she said.